首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8902篇
  免费   1213篇
  国内免费   3293篇
化学   6957篇
晶体学   412篇
力学   655篇
综合类   107篇
数学   2387篇
物理学   2890篇
  2024年   19篇
  2023年   100篇
  2022年   220篇
  2021年   266篇
  2020年   355篇
  2019年   290篇
  2018年   277篇
  2017年   487篇
  2016年   613篇
  2015年   417篇
  2014年   581篇
  2013年   1014篇
  2012年   870篇
  2011年   909篇
  2010年   744篇
  2009年   747篇
  2008年   737篇
  2007年   723篇
  2006年   600篇
  2005年   484篇
  2004年   409篇
  2003年   356篇
  2002年   349篇
  2001年   289篇
  2000年   213篇
  1999年   215篇
  1998年   186篇
  1997年   144篇
  1996年   133篇
  1995年   131篇
  1994年   117篇
  1993年   85篇
  1992年   67篇
  1991年   45篇
  1990年   47篇
  1989年   28篇
  1988年   29篇
  1987年   17篇
  1986年   10篇
  1985年   11篇
  1984年   13篇
  1983年   12篇
  1982年   12篇
  1981年   6篇
  1980年   8篇
  1979年   5篇
  1978年   4篇
  1976年   4篇
  1973年   2篇
  1959年   2篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
51.
We report the structure and thermal properties of blends comprising poly(vinylidene fluoride) (PVDF) and a random fluorinated copolymer (FCP) of poly(methyl methacrylate)‐random‐1H,1H,2H,2H‐perfluorodecyl methacrylate, promising membrane materials for oil–water separation. The roles of processing method and copolymer content on structure and properties were studied for fibrous membranes and films with varying compositions. Bead‐free, nonwoven fibrous membranes were obtained by electrospinning. Fiber diameters ranged from 0.4 to 1.9 μm, and thinner fibers were obtained for PVDF content >80%. As copolymer content increased, degree of crystallinity and onset of degradation for each blend decreased. Processing conditions have a greater impact on the crystallographic phase of PVDF than copolymer content. Fibers have polar beta phase; solution‐cast films contain gamma and beta phase; and melt crystallized films form alpha phase. Kwei's model was used to model the glass transition temperatures of the blends. Addition of FCP increases hydrophobicity of the electrospun membranes. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 312–322  相似文献   
52.
《Comptes Rendus Mecanique》2019,347(8):601-614
During machining processes, materials undergo severe deformations that lead to different behavior than in the case of slow deformation. The microstructure changes, as a consequence, affect the materials properties and therefore influence the functionality of the component. Developing material models capable of capturing such changes is therefore critical to better understand the interaction process–materials. In this paper, we introduce a new physics model associating Mechanical Threshold Stress (MTS) with Dislocation Density (DD) models. The modeling and the experimental results of a series of large strain experiments on polycrystalline copper (OFHC) involving sequences of shear deformation and strain rate (varying from quasi-static to dynamic) are very similar to those observed in processes such as machining. The Kocks–Mecking model, using the mechanical threshold stress as an internal state variable, correlates well with experimental results and strain rate jump experiments. This model was compared to the well-known Johnson–Cook model that showed some shortcomings in capturing the stain jump. The results show a high effect of rate sensitivity of strain hardening at large strains. Coupling the mechanical threshold stress dislocation density (MTS–DD), material models were implemented in the Abaqus/Explicit FE code. The model shows potentialities in predicting an increase in dislocation density and a reduction in cell size. It could ideally be used in the modeling of machining processes.  相似文献   
53.
54.
55.
In this study, a new correlation is proposed for estimating 1-alkyl-3-methylimidazolium ionic liquid (IL) viscosities at different temperatures and atmospheric pressure. Since ILs are rather novel, many of their physical properties are still unavailable. Because of this limitation, the aim of this work was to propose a correlation with a new insight and approach, which requires a minimum number of physical properties as input parameters. In addition to minimal dependency on physical properties, further goals in the development of the model were generality, ease-of-use, simplicity and high accuracy. A total of 2073 literature viscosity datapoints at different temperatures for 38 different ILs were used and a correlation was developed which satisfied the above-mentioned goals. The IL viscosity models of Lazzús and Pulgar-Villarroel, and Gardas and Coutinho were compared to the proposed correlation. More reliable results were obtained by the proposed relation in comparison to literature models.  相似文献   
56.
Post injection has significant benefit in the reduction of diesel soot emissions. Therefore, there is a need to understand the effect of post-injection strategy on soot physicochemical properties and reactivity because they play an important role in soot oxidation process that governs the final soot emissions. This work focuses on the impact of post injection on the physicochemical properties and reactivity of diesel in-cylinder soot using a main plus post injection (M*P) and a single injection (M) strategy. The soot was sampled by a developed total cylinder sampling system, and the dividing points of soot formation-dominant and oxidation-dominant phases were used for studying the impacts of post injection on the characteristics of in-cylinder soot. The physicochemical properties of the soot samples, including primary particle size, nanostructure, carbon chemical state and surface functional groups, were characterized. The soot reactivity was evaluated in terms of peak temperature, burnout temperature and apparent activation energy. In the oxidation-dominant phase, the M*P soot initially possesses smaller primary particle size, shorter fringe length, larger tortuosity, lower sp2/sp3 hybridization ratio of carbon atoms and higher content of aliphatic CH groups than the M soot. The beneficial influence of physicochemical properties on soot reactivity when using post injection is validated by the thermogravimetric data, which shows that the M*P soot is more reactive than the M soot at the onset of the oxidation-dominant phase. In the M*P case, the soot generated from the main-injection combustion has lower reactivity than the soot from the post-injection combustion after they experience the soot formation-dominant phase. The results indicate that the use of post injection leads to in-cylinder soot with physicochemical properties that favor reactivity. The enhancement of reactivity means that the soot will be more readily oxidized in the subsequent combustion process, and consequently contributes to a reduction in final soot emissions.  相似文献   
57.
《Current Applied Physics》2020,20(6):822-827
Core-shell structured magnetic Fe3O4@glutathione composite nanoparticles were synthesized and examined using diverse methods including Fourier-transform infrared spectroscopy, X-ray diffraction, energy-dispersive X-ray analysis, transmission electron microscope, thermogravimetric analysis, and vibrating sample magnetometer analysis. In addition, the nonlinear optical measurements were performed by both open and closed aperture z-scan methods using an aqueous colloidal solution of the fabricated nanoparticles. The colloidal system exhibited a positive nonlinear refractive index because of the self-focusing effect arising from optical re-orientation. Although optical re-orientation is a rare phenomenon in nanocolloids, high polarizability of the enveloping organic ligands caused optical re-orientation of the composite nanoparticles in the electrical field direction of the incident beam. Finally, the effect of external voltage on the nonlinear optical index was further investigated.  相似文献   
58.
59.
Popgraphene (PopG) is a new 2D planar carbon allotrope which is composed of 5–8–5 carbon rings. PopG is intrinsically metallic and possesses excellent thermal and mechanical stability. In this work, we report a detailed study of the thermal effects on the mechanical properties of PopG membranes using fully-atomistic reactive (ReaxFF) molecular dynamics simulations. Our results showed that PopG presents very distinct fracture mechanisms depending on the temperature and direction of the applied stretching. The main fracture dynamics trends are temperature independent and exhibit an abrupt rupture followed by fast crack propagation. The reason for this anisotropy is due to the fact that y-direction stretching leads to a deformation in the shape of the rings that cause the breaking of bonds in the pentagon-octagon and pentagon-pentagon ring connections, which is not observed for the x-direction. PopG is less stiff than graphene membranes, but the Young's modulus value is only 15 % smaller.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号